Math 103 Day 14: Limits at Infinity

Ryan Blair

University of Pennsylvania

Thursday October 28, 2010

Ryan Blair (U Penn)

Math 103 Day 14: Limits at Infinity

Outline

メロト メポト メヨト メヨト 三日

Definition

Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x\to\infty}f(x)=L$$

means that the values of f(x) can be made arbitrarily close to L by taking x sufficiently large.

Definition

Let f be a function defined on some interval $(-\infty, a)$. Then

$$\lim_{x\to -\infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by taking x sufficiently large negative.

イロト 不得下 イヨト イヨト

Definition

The line y = L is called the **horizontal asymptote** of the curve y = f(x) if either

$$lim_{x\to\infty}f(x) = L$$
 or $lim_{x\to-\infty}f(x) = L$

3

イロト イポト イヨト イヨト

Theorem

If r > 0 is a rational number, then

$$\lim_{x\to\infty}\frac{1}{x^r}=0$$

If r > 0 is a rational number such that x^r is defined for all x, then

$$\lim_{x\to -\infty}\frac{1}{x^r}=0$$

Ryan Blair (U Penn)

Math 103 Day 14: Limits at Infinity

Thursday October 28, 2010 5 / 5

3

(日) (周) (日) (日)