Math 103 Day 14: Limits at Infinity

Ryan Blair

University of Pennsylvania

Thursday October 28, 2010

Outline

Definition

Let f be a function defined on some interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

means that the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently large.

Definition

Let f be a function defined on some interval $(-\infty, a)$. Then

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

means that the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently large negative.

Definition

The line $y=L$ is called the horizontal asymptote of the curve $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \text { or } \lim _{x \rightarrow-\infty} f(x)=L
$$

Theorem

If $r>0$ is a rational number, then

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0
$$

If $r>0$ is a rational number such that x^{r} is defined for all x, then

$$
\lim _{x \rightarrow-\infty} \frac{1}{x^{r}}=0
$$

